Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.254
Filtrar
1.
Virol J ; 21(1): 78, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566231

RESUMO

Chronic obstructive pulmonary disease (COPD) affects over 250 million individuals globally and stands as the third leading cause of mortality. Respiratory viral infections serve as the primary drivers of acute exacerbations, hastening the decline in lung function and worsening the prognosis. Notably, Human Parainfluenza Virus type 3 (HPIV-3) is responsible for COPD exacerbations with a frequency comparable to that of Respiratory Syncytial Virus and Influenza viruses. However, the impact of HPIV-3 on respiratory epithelium within the context of COPD remains uncharacterized.In this study, we employed in vitro reconstitution of lower airway epithelia from lung tissues sourced from healthy donors (n = 4) and COPD patients (n = 5), maintained under air-liquid interface conditions. Through a next-generation sequencing-based transcriptome analysis, we compared the cellular response to HPIV-3 infection.Prior to infection, COPD respiratory epithelia exhibited a pro-inflammatory profile, notably enriched in canonical pathways linked to antiviral response, B cell signaling, IL-17 signaling, and epithelial-mesenchymal transition, in contrast to non-COPD epithelia. Intriguingly, post HPIV-3 infection, only non-COPD epithelia exhibited significant enrichment in interferon signaling, pattern recognition receptors of viruses and bacteria, and other pathways involved in antiviral responses. This deficiency could potentially hinder immune cell recruitment essential for controlling viral infections, thus fostering prolonged viral presence and persistent inflammation.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Vírus Sincicial Respiratório Humano , Viroses , Vírus , Humanos , Vírus da Parainfluenza 3 Humana , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Epitélio , Antivirais/uso terapêutico
2.
Viruses ; 16(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543767

RESUMO

Bovine parainfluenza virus type 3 (BPIV-3) is one of the major pathogens of the bovine respiratory disease complex (BRDC). BPIV-3 surveillance in China has been quite limited. In this study, we used PCR to test 302 cattle in China, and found that the positive rate was 4.64% and the herd-level positive rate was 13.16%. Six BPIV-3C strains were isolated and confirmed by electron microscopy, and their titers were determined. Three were sequenced by next-generation sequencing (NGS). Phylogenetic analyses showed that all isolates were most closely related to strain NX49 from Ningxia; the genetic diversity of genotype C strains was lower than strains of genotypes A and B; the HN, P, and N genes were more suitable for genotyping and evolutionary analyses of BPIV-3. Protein variation analyses showed that all isolates had mutations at amino acid sites in the proteins HN, M, F, and L. Genetic recombination analyses provided evidence for homologous recombination of BPIV-3 of bovine origin. The virulence experiment indicated that strain Hubei-03 had the highest pathogenicity and could be used as a vaccine candidate. These findings apply an important basis for the precise control of BPIV-3 in China.


Assuntos
Vírus da Parainfluenza 3 Bovina , Vírus da Parainfluenza 3 Humana , Animais , Bovinos , Virulência , Filogenia , Prevalência , Vírus da Parainfluenza 3 Bovina/genética , China/epidemiologia
3.
Vet Microbiol ; 292: 110051, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513524

RESUMO

Bovine Parainfluenza Virus Type 3 (BPIV3) serves as a crucial pathogen in cattle, adept at triggering severe respiratory symptoms. This investigation explores the intricate interplay of endoplasmic reticulum stress (ER stress), unfolded protein response (UPR), and autophagy upon BPIV3 infection. In this study, we initially confirm a substantial increase in glucose regulatory protein 78 (GRP78) expression, accompanied by noticeable morphological changes and significant expansion of the ER lumen observed through transmission electron microscopy upon BPIV3 infection. Our findings indicate that ER Stress is induced during BPIV3 infection in vitro. Subsequently, we illustrate that BPIV3 triggers ER Stress to facilitate viral replication through heightened autophagy through treatment with the ER stress inhibitor 4-phenylbutyrate (4-PBA) and utilizing small interfering RNA (siRNA) technology to knock down GRP78. Additionally, we observe that the activation of ER stress initiates the UPR via PERK and ATF6 pathways, with the IRE1 pathway not contributing to the regulation of ER stress-mediated autophagy. Moreover, intervention with the PERK inhibitor GSK2606414, ATF6 inhibitor Ceapin-A7, and siRNA technology successfully reverses BPIV3-induced autophagy. In summary, these findings propose that BPIV3 induces ER stress to enhance viral replication through increased autophagy, with the PERK and ATF6 pathways playing a significant role in ER stress-mediated autophagy.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Vírus da Parainfluenza 3 Humana , Animais , Bovinos , Vírus da Parainfluenza 3 Humana/genética , eIF-2 Quinase/genética , Estresse do Retículo Endoplasmático , RNA Interferente Pequeno , Replicação Viral , Autofagia
4.
mSphere ; 9(4): e0062423, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501829

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, outbreaks of parainfluenza virus type 3 (PIV-3) decreased due to infection control measures. However, a post-pandemic resurgence of PIV-3 has recently been observed. Nonetheless, the role of viral genetic epidemiology, possibly influenced by a genetic bottleneck effect, remains unexplored. We investigated the phylogenetic structure of the publicly available PIV-3 whole-genome and hemagglutinin-neuraminidase (HN) gene sequences spanning the last 65 years, including the COVID-19 pandemic. Sequences were retrieved from the nucleotide database of the National Center for Biotechnology Information using the search term "Human respirovirus 3." Sequence subsets covering all six genes of PIV-3 or the HN gene were designated as the whole-genome and HN surveillance data sets, respectively. Using these data sets, we constructed maximum-likelihood phylogenetic trees and performed a time-scaled analysis using a Bayesian SkyGrid coalescent prior. A total of 455 whole-genome and 1,139 HN gene sequences were extracted, revealing 10 and 11 distinct lineages, respectively, with >98% concurrence in lineage assignments. During the 2020 COVID-19 pandemic, only three single-lineage clusters were identified in Japan, Korea, and the USA. The inferred year of origin for PIV-3 was 1938 (1903-1963) for the whole-genome data set and 1955 (1930-1963) for the HN gene data set. Our study suggests that PIV-3 epidemics in the post-COVID era are likely influenced by a pandemic-driven bottleneck phenomenon and supports previous hypotheses suggesting s that PIV-3 originated during the early half of the 20th century.IMPORTANCEUsing publicly available parainfluenza virus type 3 (PIV-3) whole-genome sequences, we estimated that PIV-3 originated during the 1930s, consistent with previous hypotheses. Lineage typing and time-scaled phylogenetic analysis revealed that PIV-3 experienced a bottleneck phenomenon in Korea and the USA during the coronavirus disease 2019 pandemic. We identified the conservative hemagglutinin-neuraminidase gene as a viable alternative marker in long-term epidemiological studies of PIV-3 when whole-genome analysis is limited.


Assuntos
COVID-19 , Genoma Viral , Vírus da Parainfluenza 3 Humana , Filogenia , Humanos , Genoma Viral/genética , Vírus da Parainfluenza 3 Humana/genética , Vírus da Parainfluenza 3 Humana/classificação , COVID-19/epidemiologia , COVID-19/virologia , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/classificação , Teorema de Bayes , Proteína HN/genética , Infecções por Respirovirus/epidemiologia , Infecções por Respirovirus/virologia
5.
J Immunol ; 212(9): 1450-1456, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488511

RESUMO

Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.


Assuntos
Anticorpos Neutralizantes , Vírus da Parainfluenza 3 Humana , Humanos , Proteínas Virais de Fusão/genética , Epitopos , Anticorpos Antivirais
6.
Virus Genes ; 60(1): 1-8, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37906378

RESUMO

The extensive mass gathering of pilgrims from all over the world, as well as the constant flow of foreign workers via country entry crossings, raises the likelihood of respiratory virus outbreaks spreading and evolving in Saudi Arabia. Here, we report the sequence and phylogenetic analysis of the human parainfluenza type-2 (HPIV-2) in nasopharyngeal aspirates (NPAs) collected from Riyadh, Saudi Arabia, from 2020/21 to 2021/22 seasons. RNA was extracted from the clinical samples and subjected to RT-PCR analysis for the detection of IAV and IBV. The full-length HN gene of HPIV-2 was amplified and sequenced. Multiple sequence alignments (both nucleotides and deduced amino acids) were aligned using Clustal W, MegAlign program of Lasergene software, and MEGA 7.0. HPIV-2 was found in (4; 2% of 200) NPAs. Sequence and phylogenetic analysis results showed that indicated a genotype shifting from G3 to G4a with 83% sequence homology 62-M786 from Japan, which was prominent throughout the winter seasons of 2008/09. Multiple amino acid sequence alignment revealed 25 sites of possible difference between G3 genotypes and G4a. A total of twenty- two of these locations were shared by the other G4a genotypes, whereas three positions, 67 V, 175 S, and 377Q, were exclusively shared by G3. Only eight conserved N-glycosylation sites were found at amino acids 6(NLS), 286(NTT), 335(NIT), 388(NNS), 498(NES), 504(NPT), 517(NTT), and 539(NGT) in four Riyadh isolates. Our findings also revealed that the G4a genotype of HPIV-2 predominated in our samples population during the winter seasons of 2020/21 and 2021/22. Further research with a larger sample size covering numerous regions of Saudi Arabia throughout different epidemic seasons is needed to achieve an improved knowledge of HPIV-2 circulation.


Assuntos
Infecções por Paramyxoviridae , Humanos , Arábia Saudita/epidemiologia , Filogenia , Sequência de Aminoácidos , Aminoácidos/genética , Vírus da Parainfluenza 1 Humana , Vírus da Parainfluenza 3 Humana/genética , Vírus da Parainfluenza 2 Humana
7.
ACS Nano ; 18(2): 1404-1419, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38127731

RESUMO

This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness.


Assuntos
Nanoestruturas , Infecções por Paramyxoviridae , Humanos , Silício , Vírus da Parainfluenza 3 Humana , Antivirais
8.
Microb Pathog ; 185: 106444, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951410

RESUMO

Bovine parainfluenza virus type 3 (BPIV3) is a viral respiratory pathogen of cattle that causes substantial economic losses. A replicating-defective recombinant human adenovirus type 5 (HAd5), carrying a fusion protein of BPIV3 genotype C (HAd5-F), was constructed and evaluated for its immunogenicity and protective efficacy in mice. After intramuscular injection with the HAd5-F, the IgG titers against F proteins increased to 1:102,400, and virus-neutralizing titers increased to 1:256, significantly higher than those in the group injected with inactivated BPIV3C in mice (p<0.05). The splenic CD4+/CD8+T lymphocytes and IFN-γ+/IL-4+ cytokine percentages were more significant in the HAd5-F group than those in the control group. A BPIV3C challenge in a mouse model was used to assess protective efficacy of the HAd5-F. The viral loads in the lungs and tracheas of mice immunized with the HAd5-F were significantly lower than those in the control group (p<0.0001). There were no significant histopathological alterations in the lungs of mice vaccinated with the HAd5-F. These findings suggested that the HAd5-F elicited excellent immunity against BPIV3C infection.


Assuntos
Adenoviridae , Vírus da Parainfluenza 3 Humana , Animais , Bovinos , Humanos , Camundongos , Adenoviridae/genética , Anticorpos Antivirais , Vírus da Parainfluenza 3 Bovina/genética , Proteínas Recombinantes/genética , Genótipo
9.
Virol J ; 20(1): 248, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891594

RESUMO

BACKGROUND: Sepsis is a systemic inflammatory response syndrome caused by severe infection in children, but cases of sepsis associated with human parainfluenza virus (HPIV) have been rarely reported in newborns. CASE PRESENTATION: We report a case of HPIV-3 positive full-term newborn admitted to the Neonatal Intensive Care Unit of Beijing Children's Hospital due to hematuria, gloomy spirit, inactivity and loss of appetite for 6 h. He had septic shock when he arrived the Accident & Emergency Department requiring immediate intubation and mechanical ventilation. Intravenous antibiotics were started. He had completely negative response to all anti-shock treatments including fluid resuscitation and vasopressor supports, and died 14 h later. Viral nucleic acid detection and metagenomic next-generation sequencing (mNGS) analyses of nasopharyngeal aspirate and blood specimens verified an HPIV-3 infection, with negative bacterial culture results. The HPIV-3 strain detected in this patient was subtyped as HPIV C3a, and two unreported amino acid mutations were found in the HN protein region. CONCLUSION: The patient had a severe infection associated with HPIV-3, which was the cause of sepsis and septic shock. This study showed the diagnostic value of mNGS in etiological diagnosis, especially in severe neonatal case.


Assuntos
Infecções Respiratórias , Choque Séptico , Criança , Masculino , Humanos , Recém-Nascido , Vírus da Parainfluenza 3 Humana/genética , Choque Séptico/diagnóstico , Viremia , Mutação , Vírus da Parainfluenza 2 Humana
10.
Microbes Infect ; 25(8): 105219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37734534

RESUMO

Human parainfluenza viruses (HPIVs) are a leading cause of acute respiratory tract infections (ARTIs). Non-pharmaceutical interventions (NPIs) were widely administered to combat the pandemic of the coronavirus disease 2019 (COVID-19). Respiratory specimens were obtained from 10,454 hospitalized children with ARTIs to detect HPIV. We investigated differences in epidemiological and clinical characteristics of HPIV infections before (2017-2019) and during the COVID-19 pandemic (2020-2022). HPIVs were detected in 392 (3.75%, 392/10,454) patients, of whom 70 (17.86%), 48 (12.24%), and 274 (69.90%) were positive for HPIV1, HPIV2, and HPIV3, respectively. Detection rates of HPIV3 were higher in 2020-2022 than in 2017-2019 (3.38% vs. 2.24%). The seasonal distribution of HPIV1 showed no difference, but HPIV3 peaked between September and December during the COVID-19 pandemic, which differed from previous epidemiological patterns. Compared to the period before the COVID-19 pandemic, there has been a noticeable decrease in the incidence of asthma, moist rales, and emesis in patients infected with HPIV1 and in asthma, expectoration, and severe pneumonia in patients infected with HPIV3 during 2020-2022. The detection rates of HPIV increased in Southern China during the COVID-19 outbreak, which underlines the importance of continuous surveillance of HPIV in the next epidemic season.


Assuntos
Asma , COVID-19 , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Humanos , Pandemias , Vírus da Parainfluenza 3 Humana , COVID-19/epidemiologia , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/diagnóstico , Vírus da Parainfluenza 1 Humana , Vírus da Parainfluenza 2 Humana , Infecções Respiratórias/epidemiologia , China/epidemiologia , Asma/epidemiologia
11.
PLoS Pathog ; 19(6): e1011057, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352333

RESUMO

The pediatric live-attenuated bovine/human parainfluenza virus type 3 (B/HPIV3)-vectored vaccine expressing the prefusion-stabilized SARS-CoV-2 spike (S) protein (B/HPIV3/S-2P) was previously evaluated in vitro and in hamsters. To improve its immunogenicity, we generated B/HPIV3/S-6P, expressing S further stabilized with 6 proline mutations (S-6P). Intranasal immunization of hamsters with B/HPIV3/S-6P reproducibly elicited significantly higher serum anti-S IgA/IgG titers than B/HPIV3/S-2P; hamster sera efficiently neutralized variants of concern (VoCs), including Omicron variants. B/HPIV3/S-2P and B/HPIV3/S-6P immunization protected hamsters against weight loss and lung inflammation following SARS-CoV-2 challenge with the vaccine-matched strain WA1/2020 or VoCs B.1.1.7/Alpha or B.1.351/Beta and induced near-sterilizing immunity. Three weeks post-challenge, B/HPIV3/S-2P- and B/HPIV3/S-6P-immunized hamsters exhibited a robust anamnestic serum antibody response with increased neutralizing potency to VoCs, including Omicron sublineages. B/HPIV3/S-6P primed for stronger anamnestic antibody responses after challenge with WA1/2020 than B/HPIV3/S-2P. B/HPIV3/S-6P will be evaluated as an intranasal vaccine to protect infants against both HPIV3 and SARS-CoV-2.


Assuntos
COVID-19 , Infecções por Paramyxoviridae , Cricetinae , Humanos , Animais , Bovinos , Criança , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais , Proteínas Virais de Fusão , Vacinas Atenuadas , COVID-19/prevenção & controle , Vírus da Parainfluenza 3 Humana , Anticorpos Neutralizantes
12.
J Pediatr (Rio J) ; 99(6): 537-545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37247828

RESUMO

OBJECTIVE: To identify and assess the current evidence available about the costs of managing hospitalized pediatric patients diagnosed with Respiratory Syncytial Virus (RSV) and Parainfluenza Virus Type 3 (PIV3) in upper-middle-income countries. METHODS: The authors conducted a systematic review across seven key databases from database inception to July 2022. Costs extracted were converted into 2022 International Dollars using the Purchasing Power Parity-adjusted. PROSPERO identifier: CRD42020225757. RESULTS: No eligible study for PIV3 was recovered. For RSV, cost analysis and COI studies were performed for populations in Colombia, China, Malaysia, and Mexico. Comparing the total economic impact, the lowest cost per patient at the pediatric ward was observed in Malaysia ($ 347.60), while the highest was in Colombia ($ 709.66). On the other hand, at pediatric ICU, the lowest cost was observed in China ($ 1068.26), while the highest was in Mexico ($ 3815.56). Although there is no consensus on the major cost driver, all included studies described that the medications (treatment) consumed over 30% of the total cost. A high rate of inappropriate prescription drugs was observed. CONCLUSION: The present study highlighted how RSV infection represents a substantial economic burden to health care systems and to society. The findings of the included studies suggest a possible association between baseline risk status and expenditures. Moreover, it was observed that an important amount of the cost is destinated to treatments that have no evidence or support in most clinical practice guidelines.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Criança , Lactente , Países em Desenvolvimento , Estresse Financeiro , Vírus da Parainfluenza 3 Humana , Hospitalização
13.
J Infect Chemother ; 29(7): 678-682, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36925104

RESUMO

BACKGROUND: Parainfluenza virus type 3 (PIV-3) is one of the common pathogens for respiratory infections in children. Whether viral load of PIV-3 is associated with severity of respiratory diseases in children is not yet known. Our aim was to determine significance of PIV-3 viral load among infected children. METHODS: We conducted a single-center, retrospective study at Tokyo Metropolitan. Children's Medical Center, Japan, from June to August 2021. Hospitalized children were screened with a posterior nasal swab for multiplex PCR, and viral load was subsequently measured from remained samples by real-time PCR. Demographic data were collected from digital charts. PIV-3 positive patients were categorized into mild group with no oxygen demand, moderate group with low-flow oxygen demand and severe group with high-flow nasal cannula oxygen or non-invasive positive pressure ventilation or mechanical ventilation. Viral loads were compared among mild, moderate and severe groups. RESULTS: 151 patients were positive for PIV-3. We found no statistically significant association among PIV-3 viral load and severity of respiratory diseases (p = 0.35), and no statistically significant association between severity of illness and co-detection of other viruses. In each severity group, relatively high viral load per posterior nasal swab was observed at the time of testing. CONCLUSION: Among PIV-3 patients, we could not find statistically significant between viral load and their severity, therefore we could not conclude that viral load is a good surrogate marker for clinical severity of PIV-3.


Assuntos
Infecções Respiratórias , Viroses , Criança , Humanos , Lactente , Vírus da Parainfluenza 3 Humana/genética , Carga Viral , Estudos Retrospectivos , Infecções Respiratórias/diagnóstico , Reação em Cadeia da Polimerase Multiplex
14.
J Med Virol ; 95(3): e28622, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36846910

RESUMO

Parainfluenza virus 5 (PIV5) is a negative-sense, single-stranded RNA virus that can infect humans and many species of animals. Infection in these reservoir hosts is generally asymptomatic and has few safety concerns. Emerging evidence has shown that PIV5 is a promising vector for developing vaccines against human infectious diseases caused by coronaviruses, influenza, respiratory syncytial virus, rabies, HIV, or bacteria. In this review, we summarize recent progress and highlight the advantages and strategies of PIV5 as a vaccine vector to improve future vaccine design and application for clinical trials.


Assuntos
Vacinas contra Influenza , Influenza Humana , Vírus da Parainfluenza 5 , Vacina Antirrábica , Vírus Sincicial Respiratório Humano , Animais , Humanos , Vírus da Parainfluenza 5/genética , Vírus Sincicial Respiratório Humano/genética , Vírus da Parainfluenza 3 Humana
15.
J Pediatric Infect Dis Soc ; 12(3): 173-176, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594442

RESUMO

We conducted a phase I clinical trial of the live-attenuated recombinant human parainfluenza virus type 2 (HPIV2) vaccine candidate rHPIV2-15C/948L/∆1724 sequentially in adults, HPIV2-seropositive children, and HPIV2-seronegative children, the target population for vaccination. rHPIV2-15C/948L/∆1724 was appropriately restricted in replication in adults and HPIV2-seropositive children but was overattenuated for HPIV2-seronegative children.


Assuntos
Vírus da Parainfluenza 2 Humana , Vacinas Sintéticas , Adulto , Criança , Humanos , Anticorpos Antivirais , Vírus da Parainfluenza 1 Humana , Vírus da Parainfluenza 3 Humana , Vacinas Atenuadas
16.
Microbiol Immunol ; 67(4): 204-209, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609846

RESUMO

Bovine parainfluenza virus type 3 (BPIV3) is a promising vaccine vector against various respiratory virus infections, including the human PIV3, respiratory syncytial virus, and severe acute respiratory syndrome-coronavirus 2 infections. In this study, we combined the Magnet system and reverse genetic approach to generate photocontrollable BPIV3. An optically controllable Magnet gene was inserted into the H2 region of the BPIV3 large protein gene, which encodes an RNA-dependent RNA polymerase. The generated photocontrollable BPIV3 grew in specific regions of the cell sheet only when illuminated with blue light, suggesting that spatiotemporal control can aid in safe clinical applications of BPIV3.


Assuntos
COVID-19 , Vírus Sincicial Respiratório Humano , Animais , Bovinos , Humanos , Vírus da Parainfluenza 3 Humana/genética , Linhagem Celular , Replicação Viral , Vírus da Parainfluenza 3 Bovina/genética
18.
Clin Infect Dis ; 76(8): 1349-1357, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36503986

RESUMO

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, human parainfluenza type 3 (HPIV-3) and respiratory syncytial virus (RSV) circulation increased as nonpharmaceutical interventions were relaxed. Using data from 175 households (n = 690 members) followed between November 2020 and October 2021, we characterized HPIV-3 and RSV epidemiology in children aged 0-4 years and their households. METHODS: Households with ≥1 child aged 0-4 years were enrolled; members collected weekly nasal swabs (NS) and additional NS with respiratory illnesses (RI). We tested NS from RI episodes in children aged 0-4 years for HPIV-3, RSV, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using reverse-transcriptase polymerase chain reaction (RT-PCR). Among children with HPIV-3 or RSV infection, we tested contemporaneous NS from household members. We compared incidence rates (IRs) of RI with each virus during epidemic periods and identified household primary cases (the earliest detected household infection), and associated community exposures. RESULTS: 41 of 175 (23.4%) households had individuals with HPIV-3 (n = 45) or RSV (n = 46) infections. Among children aged 0-4 years, RI IRs /1000 person-weeks were 8.7 [6.0, 12.2] for HPIV-3, 7.6 [4.8, 11.4] for RSV, and 1.9 [1.0, 3.5] for SARS-CoV-2. Children aged 0-4 years accounted for 35 of 36 primary HPIV-3 or RSV cases. Children attending childcare or preschool had higher odds of primary infection (odds ratio, 10.81; 95% confidence interval, 3.14-37.23). CONCLUSIONS: Among children aged 0-4 years, RI IRs for HPIV-3 and RSV infection were 4-fold higher than for SARS-CoV-2 during epidemic periods. HPIV-3 and RSV were almost exclusively introduced into households by young children.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Humanos , Pré-Escolar , Lactente , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus da Parainfluenza 3 Humana , Maryland , COVID-19/epidemiologia , SARS-CoV-2 , Vírus Sincicial Respiratório Humano/genética , Pandemias
19.
Curr Comput Aided Drug Des ; 19(3): 163-175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36475332

RESUMO

BACKGROUND: Human parainfluenza viruses type 3 (HPIV-3) through bronchiolitis and pneumonia is a common cause of lower respiratory tract infections. It is the main cause of hospitalization of infants and young children and also one of the main causes of morbidity and mortality in immuno-compromised and transplant patients. Despite many efforts, there is currently no specific anti-HPIV-3 drug or approved vaccine to prevent and control the virus. Identification of HPIV-3 epitopes with the capability of binding to human leukocyte antigen (HLA) class II molecules can be helpful in designing new vaccine candidates against HPIV-3 infection, and also can be useful for the in vitro stimulation and proliferation of HPIV-3-specific T cells for transplant and immunocompromised patients. OBJECTIVE: To predict and comprehensively evaluate CD4+T cell epitope (HLA-II binders) from four main HPIV-3 antigens. METHODS: In the present work, we predicted and comprehensively evaluated CD4+T cell epitope (HLA-II binders) from four main HPIV-3 antigens, including fusion protein (F), hemagglutininneuraminidase (HN), nucleocapsid (N) and matrix (M) proteins using bio- and immunoinformatics software. The toxicity, allergenicity, Blast screening and population coverage of the predicted epitopes were evaluated. The binding ability of the final selected epitopes was evaluated via a docking study. RESULTS: After several filtering steps, including blast screening, toxicity and allergenicity assay, population coverage and docking study, 9 epitopes were selected as candidate epitopes. The selected epitopes showed high population coverage and docking studies revealed a significantly higher binding affinity for the final epitopes in comparison with the negative control peptides. CONCLUSION: The final selected epitopes could be useful in designing vaccine candidates and for the treatment of immune-compromised individuals and patients with transplantation.


Assuntos
Infecções por Paramyxoviridae , Vacinas , Criança , Humanos , Pré-Escolar , Epitopos de Linfócito T , Vírus da Parainfluenza 3 Humana , Antígenos HLA , Linfócitos T CD4-Positivos
20.
Virol J ; 19(1): 141, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36064562

RESUMO

BACKGROUND: The development of the polymerase chain reaction (PCR) test promoted the evaluation of the epidemiological and clinical characteristics of human parainfluenza virus (HPIV) type 4, which has been rarely studied using conventional diagnostic methods. This study aimed to determine the seasonal epidemiological and clinical characteristics of all four HPIV serotypes (HPIV-1, HPIV-2, HPIV-3, and HPIV-4) during the era of PCR testing. METHODS: The medical records of hospitalized pediatric patients diagnosed with HPIV infections by a multiplex PCR test between 2015 and 2021 were retrospectively reviewed to determine the seasonal distributions of each HPIV serotype. For patients with a single HPIV infection, the clinical characteristics of each HPIV serotype were evaluated and compared with one another. RESULTS: Among the 514 cases of HPIV infection, HPIV-1, HPIV-2, HPIV-3, and HPIV-4 were identified in 27.2%, 11.9%, 42.6%, and 18.3% of cases, respectively. HPIV-3 was most prevalent in spring, and the other three serotypes were most prevalent in autumn. For patients with a single HPIV infection, those infected by HPIV-1 and HPIV-3 were younger than those infected by HPIV-2 and HPIV-4 (P < 0.001). Croup and lower respiratory tract infection (LRI) were most frequently diagnosed in patients infected by HPIV-1 (P < 0.001) and HPIV-4 (P = 0.002), respectively. During 2020-2021, HPIV-3 was most prevalent in autumn and caused fewer LRIs (P = 0.009) and more seizures (P < 0.001) than during 2015-2019. CONCLUSIONS: Each HPIV serotype exhibited a distinct seasonal predominance, and some differences in the clinical characteristics of the HPIV serotypes were observed. HPIV-4 acted as an important cause of LRI. Considering the recent changes in the epidemiological and clinical characteristics of HPIV-3, more time-series analyses should be conducted.


Assuntos
Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Humanos , Vírus da Parainfluenza 1 Humana , Vírus da Parainfluenza 2 Humana , Vírus da Parainfluenza 3 Humana , Vírus da Parainfluenza 4 Humana , Infecções Respiratórias/epidemiologia , Estudos Retrospectivos , Estações do Ano , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...